
This article has been accepted for publication on the 18th International Symposium on ”A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM) Demo Session (WoWMoM 2017 Demo Session), but has not been fully edited. Content may change prior to final publication.

Hotspot Slicer: Slicing virtualized Home Wi-Fi

Networks for Air-Time Guarantee and Traffic

Isolation

Sven Zehl, Anatolij Zubow and Adam Wolisz

{zehl, zubow, wolisz}@tkn.tu-berlin.de

Telecommunication Networks Group, Technische Universität Berlin, Germany

Abstract—Nowadays, the usage of multiple virtual wireless
networks on top of one physical AP is very common in home
Wi-Fi networks. Be it Hotspots of Internet Service Providers
(ISPs) or Mobile Network Operators (MNOs) used for offloading
their traffic, community networks or plain so-called ”Guest-
Networks”. Whereas the home user (AP owner) in the best case
should not even be aware that his network connection is shared.
Most of the ISPs and MNOs are now trying to convince their
customers to install an additional virtual wireless hotspot network
on their home AP and offer them in return the free usage of
all other available hotspots. But, currently most costumers are
skeptical as the providers cannot guarantee a downlink slice of
air-time or real separation in time on the wireless access network.
In this paper we demonstrate by using a novel downlink slicing
scheme applied on commercial off-the-shelf hardware, how slicing
on MAC level can be applied to truly guarantee a fixed amount
of air-time for the home user and provide complete traffic
separation in time between the home and the hotspot network.
Moreover, our demonstrator shows the benefits of the approach
by comparing the quality of a high definition video stream with
and without our MAC slicing approach.

I. INTRODUCTION

Using several virtual wireless networks, identified through

different service set identifiers (SSIDs) and basic service set

identifiers (BSSIDs), on one physical Wi-Fi Access Point (AP)

is very common in today’s home Wi-Fi networks. The first

virtual network usually provides Internet connectivity for the

resident or the owner of the AP. All further virtual networks are

for example used for so-called ”Guest Networks”, Community

Networks or Public Hot-spots of the Internet Service Provider

(ISP) or a Mobile Network Operator (MNO). Albeit all of

them are used by different target groups, all of them are used

to provide Internet access to some kind of guest users. Whereas

the home user (AP owner) in the best case should not even be

aware that his network connection is shared. Generally, this

has to be tackled on two points, first on the backhaul network

(usually wired) and second on the WiFi access network.

While current approaches focused on the back-haul network

by applying network slicing [1] or traffic shaping with e.g.

the aid of software defined networking (SDN) techniques [2],

our approach slices the network directly before CSMA/CA is

used to send the traffic over the wireless medium. Slicing the

network on MAC level of the access network provides several

advantages to efficiently control the resources of the wireless

network. First, there is no need for extensive packet-capturing

or air-time calculation. Second, even fine grained MAC slicing

is possible, and third, real resource isolation in time can be

achieved.

Fig. 1. Hotspot Slicer: Slicing virtualized Home Wi-Fi networks

In this paper we demonstrate a solution that considers

the needs of the residents or home AP owners and the

characteristics of today’s home wireless access networks to

apply a novel slicing technology to guarantee air-time1 and

traffic isolation in time for the downlink of the Wi-Fi devices

of the home AP owner. To show the effectiveness of MAC

slicing, the demonstrator streams a high quality video to the

home device. During the course of the demo, MAC slicing is

turned off to show the audience the problem of the current

state-of-the-art approach – significant juddering and artifacts

even with only two additional hotspot users.

Finally, we provide the full source code of our demonstrator,

which is primarily based on a modified version of the popular

ath9k driver, to the research community [3].

II. HOTSPOT SLICER DEMONSTRATOR BUILDING BLOCKS

A. ath9k driver

The ath9k driver is part of the so-called SoftMAC architec-

ture of the Linux Wi-Fi stack. Originally, Wi-Fi MACs were

completely implemented as FullMAC devices, in which all

MAC layer functions are controlled by the individual hardware

or firmware of the device. In contrast to FullMAC devices in

a SoftMAC device the whole 802.11 frame management has

to be done by a software module running on the host system.

1We define the term air-time as the time when the Wi-Fi chip is transmitting
data via the wireless channel plus the time needed for medium access.

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works. See http://www.ieee.org/publications standards/publications/rights/index.html for
more information



Hotspot Slicer

-Split Medium Access in Slots of 10ms

-> Enables slice adjustment during runtime

-Calculate schedule, e.g. 

superframe = 8 slots, slice 1 = 75%

-> slice 1 = 6 slots, slice 2 = 2 slots

Ath9k Software Queues

WiFi 

Hardware

STA-1 

Home

Virtual Interface

STA-2

Hotspot

Virtual Interface

STA-3

Hotspot

Virtual Interface

STA-1 

Home

Virtual Interface

STA-2

Hotspot

Virtual Interface

STA-3

Hotspot

Virtual Interface

Slots of 

Slice 2

Home 

User

Virtual 

Network 

75 % 

Airtime

Free for 

all

Slice 

#2

Slice 

#1

Slice 1                                 Slice 2

Superframe

(a) (b) (c)

Input: Slice Size of 

Home Network in 

Percent, e.g. 75%

Slots of 

Slice 1

Output: Steering

 of the ath9k software 

queues

Required Slice Allocation

Fig. 2. Hotspot slicer implementation, (a) Input is size in percent of needed air-time for home network (slice 1), (b) medium access is partioned within
small slots forming a super frame to enable fine grained slice adjustment, HotSpot slicer calculates needed slots to form slice of home-network (c) slicing is
achieved by pausing and unpausing the ath9k software queues directly before the data is handed over to the hardware.

The Linux Wi-Fi SoftMAC module consists of general hard-

ware independent modules that are shared by all underlying

Wi-Fi driver modules (cfg80211 and mac80211) and additional

hardware dependent modules such as the ath9k driver module,

cf. Fig. 3.

Communication from user-space to the kernel-space is

enabled by the use of Netlink sockets and a set of prede-

fined commands called NL80211. All commands are received

by cfg80211, which exists as layer between user-space and

mac80211. Downwards, the mac80211 module is commu-

nicating with the specific hardware driver, e.g. ath9k for

Atheros cards or iwlwifi for Intel cards. All the kernel internal

communication between cfg80211 and mac80211 and between

mac80211 and the hardware driver is realized by callback

functions.

cfg80211

mac80211

ath9k other drivers

From user-space via Netlink

From user-space 

via wext

Fig. 3. Mac80211 Structure.

B. ath9k Frame Queuing

In order to enable aggregation, block acknowledgement and

power saving functionality, the ath9k driver is maintaining

software queues for each link and each traffic identifier (TID).

TID values between 0 and 7 are priorities that are mapped

to the corresponding 802.11e traffic class hardware queues

(background, best effort, voice and video). TID values between

8 and 16 are used to implement the 802.11e traffic specification

(TSPEC) functionality.

C. IEEE 802.11 Power Saving Functionality

The standard 802.11 power saving mechanism (PSM) en-

ables client STAs to sleep when it has no frames to send and

no frames destined to it are waiting to be received. In this

doze state, the STA is able to save energy, but is not able to

transmit or receiver any frames. If there are frames destined

to a sleeping STA operating in infrastructure mode, the AP

buffers these frames till the STA indicates that it is awake

and ready to receive them. In the opposite direction, a STA is

always able to transmit frames destined to the AP.

III. HOTSPOT SLICER IMPLEMENTATION

To enable slicing of the MAC layer, we utilize the existing

ath9k driver power saving implementation to pause and un-

pause the traffic per link by steering the ath9k software queues,

cf. Sec. II-B. As the power saving functionality is running

inside the Linux kernel, no modifications to the registers of the

Wi-Fi hardware need to be done, which preserves the standard

MAC functionality such as CSMA/CA. For this reason, we

do not introduce additional unfairness and are fully compliant

with the IEEE 802.11 standard.

We implemented the Hotspot Slicer by adding two addi-

tional functions to the ath9k frame queuing functionality in the

wireless driver similar to [4]. The first function can be used

for pausing distinct software queues of the ath9k driver which

are identified by the utilized virtual interface plus the receiver

MAC address and traffic identifier (TID). The second function

enables to continue distinct queues. For calling the functions

we utilize the Netlink protocol and extended therefore the

standard functionality of nl80211 to enable the call of these

two functions from Linux user-space.

For enabling fine granular adjustment of the slice size during

runtime, we additionally divide the medium access in small

slots of 10ṁs size. Multiple slots are then combined to form

a slice which is then assigned to distinct virtual interface, cf.

Fig. 2b.

Within user-space, a small C++ daemon equipped with a

Netlink socket takes care of the slot scheduling. In every



slot, the daemon is sending the current slot configuration, e.g.

which queues should be paused and which not, directly via

Netlink to the ath9k driver. The modified driver then pauses

or un-pauses the transmission of frames belonging to the

corresponding virtual interface, cf. Fig. 2c. Using this setup

we are able to set fixed air-time slots for every single virtual

interface and therefore to slice the downlink of the physical

AP into as many slices as virtual interfaces are available,

e.g. Hotspot ISP1, Hotspot MNO1, Guest-Network1, Home-

Network, etc.

Moreover, to enable changing the slice size during runtime,

the daemon is also equipped with a ZeroMQ2 socket that

allows sending of new slot schedules which are then applied

immediately. With this enhancement we are in addition to

guaranteeing air-time to the home network users, able to

guarantee a fixed amount of bandwidth by incorporating the

physical transmission rate and the busy time of the wireless

channel and calculate the required number of slots needed for

the slice of the home network to full-fill a required bandwidth.

Both values, the currently used physical transmission rate

and the time the channel is occupied by other devices, can

be collected using the debugFS interface of the ath9k driver

during run-time.

For future work, we plan to utilize the MAC slicer together

with ResFi [5] to enable traffic separation of neighboring APs

to solve hidden node problems.

IV. DEMONSTRATOR SETUP

Home User

HD Video Streaming

Home Wi-Fi 

Access Point

Hotspot

User 2

Current 

Throughput

Hotspot

User 1

Current Air-time

Slice Size

Fig. 4. Demonstrator Setup

The demonstrator setup is shown in Fig. 4 it consists of a

home AP represented by Intel NUC hardware with a Linux

based system running the modified ath9k implementation

described in Section III together with the Linux software AP

implementation hostapd. Further, three different unmodified

client STAs are used to represent one home device (Android

Tablet, used to watch a video stream) and two guest devices

2http://zeromq.org/

(Android Tablet and Android smart-phone downloading data

from the Internet). Using the open-source wireless exper-

imenter software Uniflex [6] together with the Node Red

visualization software [7] we show the current throughput

plus the current size of the slice assigned to the down-link

of the corresponding client STA, cf. Fig.4. In the course of

the demo, we show the difference between the throughput

without MAC slicing in which every client STA independently

of their associated virtual Wi-Fi network (Home or Hotspot)

will get the same amount of air-time between the case in which

MAC layer slicing is applied to achieve air-time guarantee for

the home virtual network. The demo mimics a use-case in

which an Android tablet used by the AP owner to stream a

high resolution video competes for down-link bandwidth with

two hot-spot user devices which want to download data from

the Internet. The demo shows that without MAC slicing it

is impossible to achieve judder and artifact free streaming

using the home device, cf. Fig.5(b), after MAC slicing is

activated enough bandwidth will be available to enable high

quality streaming, cf. Fig.5(a), while the throughput of the

guest devices will drop, cf. Fig. 4. Moreover, during the

demonstration, the audience will be able to switch client STAs

either of the home or the guest network on and off and see the

impact on the throughput either when the baseline approach

is applied (no slicing) or when air-time is guaranteed to the

home network.

(a) (b)

Fig. 5. Screenshot of the home device when (a) MAC layer slicing is applied,
and (b) MAC slicing is disabled (baseline)

ACKNOWLEDGMENT

This work has been supported by the European Union’s

Horizon 2020 research and innovation program under grant

agreement No. 645274 (WiSHFUL project).

REFERENCES

[1] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown,
“Slicing home networks,” in Workshop on Home networks. ACM, 2011.

[2] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H.
Kim, and T. Nadeem, “mesdn: mobile extension of sdn,” in Iinternational

workshop on Mobile cloud computing & services. ACM, 2014.
[3] S. Zehl, “Hotspot slicer,” https://github.com/szehl/hotspot-slicer, 2017.
[4] S. Zehl, A. Zubow, and A. Wolisz, “hmac: Enabling hybrid tdma/csma

on ieee 802.11 hardware,” arXiv preprint arXiv:1611.05376, 2016.
[5] S. Zehl, A. Zubow, M. Döring, and A. Wolisz, “ResFi: A Secure Frame-

work for Self Organized Radio Resource Management in Residential WiFi
Networks,” in IEEE WoWMoM 2016, June 2016.

[6] P. Gawlowicz, A. Zubow, M. Chwalisz, and A. Wolisz, “UniFlex: A
Framework for Simplifying Wireless Network Control,” in ICC 2017,
May 2017.

[7] N. O’Leary and D. Conway-Jones, “Node red - a visual tool for wiring
the internet of things,” https://github.com/node-red/node-red, 2017.


