
GrGym: When GNU Radio goes to (AI) Gym
Anatolij Zubow, Sascha Rösler, Piotr Gawłowicz, Falko Dressler

Talk@ACM HotMobile 2021

Motivation
 Boom of applications using Reinforcement Learning

Slide 2

OpenAI Gym
 Gym is open-source framework with vast set of standardized

environments including algorithmic examples, games and 3D robots

 Gym allows for developing and comparing Reinforcement
Learning (RL) algorithms in the same virtual conditions

 Gym is a wrapper that provides an unified environment API:
 reset()
 next_state = step(action)
 (optional) render()

 New environment can be integrated:
 Need to represent state &

actions as numerical values

Slide 3

import gym

env = gym.make('CartPole-v0')
obs = env.reset()
agent = MyGreatAgent()
done = False

while not done:
action = agent.get_next_action(obs)
obs, reward, done, info = env.step(action)

GNU Radio
 Toolkit with rich library of signal-processing

blocks for building software-defined radios

 Design of flow graph (XML/Python): vertices are signal processing
blocks (C++), edges represent data flow between them

 Each block processes in real-time an infinite stream of data flowing
from its input ports to its output ports

 Partial/full implementations of 802.11, 802.15.4, LTE

 GNU Radio programs run on real hardware (USRP) or loopback in a
fully simulated environment

Slide 4

GrGym framework: Design Principles
 Modern (wireless) communication networks have evolved into

complex & dynamic systems, e.g. hundreds of knobs in 802.11ax/be

 New approaches needed for control & management of such
networks, i.e. application of ML techniques like RL

 Goal: facilitate and shorten time required for developing novel RL-
based communication networking solutions
 RL-driven control algorithms should be trained in a simulated

environment before running in real world
 Flexibility of SDR platforms allows to quickly

switch from simulated environment to real-world
 Transfer learning

Slide 5

bit.ly/3upLFk3

GrGym framework
 A generic interface between OpenAI

Gym & GNU Radio

 Only small changes to radio programs
(GRC flow graph) needed to make them
usable by framework:
 Blocks added for IPC with framework
 Life-cycle management
 Collection of observation & reward

 GrGym middleware takes care of
transferring state (observations, reward)
& control (actions) between agent and
network of GNU Radio nodes:
 Two parts: i) generic and ii) scenario-

specific implementation
Slide 6

Architecture of GrGym framework

GrGym: Basic Example

1. Configuration file (YAML)

2. RL agent (Python)

Slide 7

1

2

Start GrGym

Interact with env.
via step()

remote or local ?

GrGym
scenario class

Implementation of step()

Exec action

Get reward

Sim
channel

Get
observation

Pause

GrGym: Workflow
 Workflow consists of 6 steps:

1. Setup single or network of GNU Radio nodes

2. Modify radio programs (described as GRC flow graph)

• Add blocks to get data for observation/reward

• Add blocks for IPC with GrGym (XML RPC, ZMQ/file)

3. Write GrGym scenario (Python) which implements all functions,

• Maps generic framework functions to scenario, e.g., action= MCS index

4. Wire everything with config.yaml

5. Write RL agent which interacts with environment via Gym API

6. Train the agent and analyze results

Slide 8

GRC flowgraph

Example Scenario: IEEE 802.11 Rate Control
 802.11p based on [1] as proof-of-concept scenario

 RL modeling for closed-loop rate control:
 Action (MCS)
 Reward (effective data rate)
 Observation (RSSI)

 GrGym configuration:
 Single flowgraph: TX & RX are

connected by simulated channel
 Additional GNU Radio

blocks added (counting sequence no., RSSI)

Slide 9
[1] Bloessl et al., „An IEEE 802.11a/g/p OFDM Receiver for GNU Radio“, ACM SIGCOMM 2013

Case Study: RL-based Rate Control
 Objective: agent decides on MCS for next packet transmissions in

802.11p scenario

 Observation is current channel condition, i.e. absolute signal strength
(RSSI) per OFDM subcarrier

 Challenging as RSSI is uncalibrated, i.e., unknown noise floor

 Learn to map absolute RSSI to MCS

 Agent uses Actor-Critic (AC) method

 Reward = effective throughput,
i.e. PSR × bitrate

Slide 10

bit.ly/2Nul30i

MCS

Case Study: RL-based Rate Control (II)
 GrGym setup:

 Standalone mode with simulated channel
 AWGN, mobility => distance changed randomly every 100 ms

 RL mapping due to further simplifications:
 Observation — mean RSSI normalized into [0, 1],
 Action — MCS for next time slot,
 Reward — effective throughput computed over last step,
 Gameover — if effective throughput was 0 during last 10 time slots

 Neural network used:

Slide 11

Case Study: RL-based Rate Control (III)
 Results:

 At t=0 RL-agent randomly tests different MCS regardless of RSSI
 After t=570 episodes agent perfectly selects correct MCS

Slide 12

t=0 t=570

Case Study: RL-based Rate Control (IV)
 Can we use a real wireless channel?

 … so far RL agent trained in an environment with simulated channel
 But agent can be trained in real testbed using SDR hardware with real

mobile (!) wireless channel

 Here framework latency becomes an issue!
 agent should not decide on an action based on outdated observation

 Let’s analyze efficiency of RL-based rate control, i.e. miss ratio 𝑀𝑀 = 𝜏𝜏/𝑇𝑇𝑐𝑐

Slide 13

Coherence time vs. miss ratio

→v

Conclusions
 GrGym – framework that simplifies usage of RL for solving problems

in area of (wireless) communication networks

 It is based on OpenAI Gym and GNU Radio framework

 Plans for future:
 Custom scenario implementations for ZigBee & LTE
 Addressing framework limitations like latency
 Going beyond simple parameter learning

 We hope for research community to grow around it

Slide 14

Thank you!
Q&A

Slide 15

https://github.com/tkn-tub/gr-gym

Check GrGym on

	GrGym: When GNU Radio goes to (AI) Gym
	Motivation
	OpenAI Gym
	GNU Radio
	GrGym framework: Design Principles
	GrGym framework
	GrGym: Basic Example
	GrGym: Workflow
	Example Scenario: IEEE 802.11 Rate Control
	Case Study: RL-based Rate Control
	Case Study: RL-based Rate Control (II)
	Case Study: RL-based Rate Control (III)
	Case Study: RL-based Rate Control (IV)
	Conclusions
	Slide Number 15

