Technische .
Universitat

Berlin

GrGym: When GNU Radio goes to (Al) Gym
Anatolij Zubow, Sascha Rosler, Piotr Gawtowicz, Falko Dressler HOtMOb”e

Talk@ACM HotMobile 2021 2021 Cyberspace

Technische '
Universitat

Berlin

Slide 2

P =
1-"'"'4‘

PTIPN I

e

OpenAl Gym

Technische '
Universitat

Berlin

= Gym is open-source framework with vast set of standardized
environments including algorithmic examples, games and 3D robots

= Gym allows for developing and comparing Reinforcement @

Learning (RL) algorithms in the same virtual conditions

OpenAl

= Gym is a wrapper that provides an unified environment API:

= reset()
= next_state = step(action)
= (optional) render()

= New environment can be integrated:

= Need to represent state &
actions as numerical values

Slide 3

import gym

env = gym.make('CartPole-v0')
obs = env.reset()

agent = MyGreatAgent()

done = False

while not done:
action = agent.get_next_action(obs)
obs, reward, done, info = env.step(action)

Technische '
Universitat

Berlin

" -
i,
s >y - :‘:‘:“.:
< : TR
Pl e~ e
J'-"-ﬁ:'.- 1 11 < o
o 11] A\! {I £l

GNU Radio

= Toolkit with rich library of signal-processing o -
blocks for building software-defined radios SDGNURadIO

= Design of flow graph (XML/Python): vertices are signhal processing
blocks (C++), edges represent data flow between them

= Each block processes in real-time an infinite stream of data flowing
from its input ports to its output ports .

= Partial/full implementations of 802.11, 802.15.4, LTE lte

= GNU Radio programs run on real hardware (USRP) or loopback in a
fully simulated environment

TKN

Technische '
Universitat

Berlin

7 N
A T
= IS

GrGym framework: Design Principles

= Modern (wireless) communication networks have evolved into
complex & dynamic systems, e.g. hundreds of knobs in 802.11ax/be

= New approaches needed for control & management of such
networks, i.e. application of ML technigues like RL

= Goal: facilitate and shorten time required for developing novel RL-
based communication networking solutions

= RL-driven control algorithms should be trained in a simulated
environment before running in real world I g ¥

= Flexibility of SDR platforms allows to quickly ol > |
switch from simulated environment to real-world 4

= Transfer learning A
bit.ly/3upLFk3

TKN

:
Py

= al ﬂ%j

e
Ed" .
-
-

sl

e
£l

GrGym framework

A generic interface between OpenAl
Gym & GNU Radio

Only small changes to radio programs
(GRC flow graph) needed to make them
usable by framework:

= Blocks added for IPC with framework

= Life-cycle management

= Collection of observation & reward

GrGym middleware takes care of
transferring state (observations, reward)
& control (actions) between agent and
network of GNU Radio nodes:

= Two parts: i) generic and ii) scenario-
specific implementation

Slide 6

Technische '
Universitat

Berlin

RL agent
¢ Gym API
£ GrEnv
>
< custom
S |EEE 802.11 LTE } .
o scenarios
C l GrBridge |
— x
5 b k gr-gym middleware
(RPC, ZMQ, pipes)
Gnu Radio state collection & action execution

>

[

im ulated
channel ‘

Single node (runs all radio
programs and channel)

vee ": “"'.A ‘A
() S
’ 5EEE\ Ny J l N, [' N

- ~

Real channel

Network of nodes (radio program
on each node; real channel)

Architecture of GrGym framework

TKN

GrGym

1. Configuration file (YAML)
2. RL agent (Python)

Implementation of step()

|
|
GrEnv I
|
|

T i
| : specific, e.g. 802.1 lp: |

Gym:.: Execute
step(action) action Execute
action
-———————
Sleep
(step_time) é‘
Get o
(reward, done, info]— Collect >
reward, done
-— - — —— — -
B N et S
| Sim channel -i
| Changeenv
B !
S ||| *--————— [Fe=====" I
k= | 6—
ol Sleep |
:_ (sim_time) |
Get =
observation __Collectobs
-———— — — E
_Rewrn ([T T T 7T
state L L

Slide 7

Technische
Universitat

Berlin

grgym_environment:
run_local: True # GNU Radio is local or remote

timebased: # a step is progress in time
step_time: 0.5 # step duration (in s)

eventbased: True # if false use time based ‘i\\\\\\\ t | | ?
max_steps_zero_reward: 3@ # max steps with no reward remote or local :

grgym_local: # used if grgym_environment.run_local == True
compile_and_start_gr: True / disable if remote
host: localhost # local GNU Radio process
rpc_port: 808@ # GNU Radio RPC port
gr_ipc: ZMQ # IPC between grgym and gnuradio
gr_grc: benchmark_ieee86211_wifi_loopback_zmq # used GRC flow graph
grgym_remote: # if grgym_environment.run_local == False
num_nodes: 1
node@:
name: TX_RX_channel
host: 10.0.9.2 # remote GnuRadio process
rpc_port: 8080 # RPC port of remote GnuRadio
grgym_scenario: (
scenario_class: benchmark.BenchmarkScenario # used GrGym scenario

GrGym

scenario class

ort gym
ort MyAgent

f scenario specific arguments
= gym.make('grgym:grenv-ve') 15.______---—-

-seed(47) Start GrGym
= env.reset()

ant = MyAgent.Agent()

le True:

ction = agent.get_action(obs) leract Gith env

via step()

6| env.close()

l' 4 111

o e---
x._‘_‘\ .
AR < Technische '
]}\I o : " Universitat

"=s;_:;
! i \ - Berlin

GrGym: Workflow

= Workflow consists of 6 steps: Dj

Slide 8

1.
2.

3.

4.
5.
6.

Setup single or network of GNU Radio nodes c

Modify radio programs (described as GRC flow graph) Co

* Add blocks to get data for observation/reward

e Add blocks for IPC with GrGym (XML RPC, ZMQ/file)

Write GrGym scenario (Python) which implements all functions,

* Maps generic framework functions to scenario, e.g., action= MCS index
Wire everything with config.yaml
Write RL agent which interacts with environment via Gym API

Train the agent and analyze results

TKN

l“" ‘; '. " H:‘:‘:‘ - ﬂs
#F'? RN Technische
: Universitat
- 11“'/\“!: %

Berlin

Example Scenario: IEEE 802.11 Rate Control

802.11p based on [1] as proof-of-concept scenario

RL modeling for closed-loop rate control: GRC flowgraph
= Action (MCS)

= Reward (effective data rate)
= Observation (RSSI)

= GrGym configuration:
= Single flowgraph: TX & RX are
connected by simulated channel
= Additional GNU Radio
blocks added (counting sequence no., RSSI)

[1] Bloessl et al., ,An IEEE 802.11a/g/p OFDM Receiver for GNU Radio*, ACM SIGCOMM 2013 T K N
Slide 9

l ' 1 ;" N Technische ' 'E
5_? e Universitat
= ﬂ/\j s \ Berlin

Case Study: RL- based Rate Control

= QObjective: agent decides on MCS for next packet transmissions in
802.11p scenario

= QObservation is current channel condition, i.e. absolute signal strength
(RSSI) per OFDM subcarrier

= Challenging as RSSI is uncalibrated, i.e., unknown noise floor

Really bad
action
MCS H H

= Reward = effective throughput, - an
l.e. PSR x bitrate Actor Critic

= Learn to map absolute RSSI to MCS

= Agent uses Actor-Critic (AC) method

bit.ly/2Nul30i

oo TKN

; < '—““C-_
: a‘r"?ﬁ SR Technische '
- 2 a P
o ﬂ AN Universitat
s 1'1 ‘ITA\! x

.“"._ '-
s Berlin

Case Study: RL-based Rate Control (I1)

= GrGym setup:
= Standalone mode with simulated channel
= AWGN, mobility => distance changed randomly every 100 ms

= RL mapping due to further simplifications:
= Observation — mean RSSI normalized into [0, 1],
= Action — MCS for next time slot,
» Reward — effective throughput computed over last step,
= Gameover — if effective throughput was 0 during last 10 time slots

= Neural network used:

1| inputs = layers.Input(shape=(1,))

2| common = layers.Dense(128, activation="relu") (inputs)

3| action = layers.Dense(env.action_space.n, activation="softmax") (common)
4| critic = layers.Dense (1) (common)

5| model = keras.Model(inputs=inputs, outputs=[action, critic])

o TKN

Technische '
Universitat

Berlin

Case Study RL based Rate Control (l1)

= Results:

= At t=0 RL-agent randomly tests different MCS regardless of RSSI
= After t=570 eplsodes agent perfectly selects correct MCS

30— 30 - — —

[e QP:;K 3/4 [e QP SK 3/4 AA Aa bm ni
= B 16QAM 3/4 —= [™ 16QAM3/4 A]
'_g* 20 [. 64QAM 3/4 3 20 A 64QAM 3/4 l“

— b L
=} [. = ’” u
cs_G' B ' A k Ci_ﬁ. u
E 10 {% 10
) - =
0 — [P ! — — —
0.0 0.2 0.4 = 1500 f] 0.6 0.8 1.0
Mean R g : / 1n RSSI
- L 4
< 1000
<
e
@ [
= 500 ff====—0ptimum]
n]
F —— RL-RT]
0 PR PR PR PR PR PRI i
| 0 100 200 300 400 500 I K N
Slide 12 Episode

%‘,5-_»‘3%";*. - ‘\'-:;“:_ Tthnis'c?‘J‘e ' E
S EIEN T g '
Case Study: RL-based Rate Control (1V)

= Can we use areal wireless channel?

= ... so far RL agent trained in an environment with simulated channel

= But agent can be trained in real testbed using SDR hardware with real

mobile (!) wireless channel \7

= Here framework latency becomes an issue!

= agent should not decide on an action based on outdated observation
= Let’s analyze efficiency of RL-based rate control, i.e. miss ratio M = 7/T,

Channel SNR :< co::qrsr{e >: v [m/s] T, [ms] M(%,local) M(%,remote)
‘%i r 1 254 (354) 5.51
= | 2 12.7 09 11.03
I% MCS selection | 3 8.5 10.63 16.54
Link MCS I_éi 4 lags behind | 4 6.3 14.18
:é : 5 5.1 17.72 (2757)
= | P time Coherence time vs. miss ratio

incorrect MCS

oo TKN

Technische '
Universitat

Berlin

A -
A,
. o
?"’ i
o T
. J-ﬁ’; -] 11 Z X HHH"\ . .'.--‘:-7':1‘-.
o 11] A\[i' P

Conclusions

= GrGym — framework that simplifies usage of RL for solving problems
in area of (wireless) communication networks 2 ;
ireiess %GNURadio

= |tis based on OpenAl Gym and GNU Radio framework
OpenAl

= Plans for future:
= Custom scenario implementations for ZigBee & LTE
= Addressing framework limitations like latency
= Going beyond simple parameter learning

= \We hope for research community to grow around it

o TKN

Thank you!
Q&A

C)

Check GrGym on GitHub

https://github.com/tkn-tub/gr-gym
TKN

	GrGym: When GNU Radio goes to (AI) Gym
	Motivation
	OpenAI Gym
	GNU Radio
	GrGym framework: Design Principles
	GrGym framework
	GrGym: Basic Example
	GrGym: Workflow
	Example Scenario: IEEE 802.11 Rate Control
	Case Study: RL-based Rate Control
	Case Study: RL-based Rate Control (II)
	Case Study: RL-based Rate Control (III)
	Case Study: RL-based Rate Control (IV)
	Conclusions
	Slide Number 15

