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ABSTRACT

Recently, we have seen a boom attempts to improve the operation of
networking protocols using machine learning (ML) techniques. The
proposed reinforcement learning (RL) based control solutions very
often overtake traditionally designed ones in terms of performance
and efficiency. However, in order to reach such a superb level, an RL
control agent requires a lot of interactions with an environment to
learn the best policies. Similarly, the recent advancements in image
recognition area were enabled by the rise of large labeled datasets
(e.g. ImageNet [8]). This paper presents the ns3-gym — the first
framework for RL research in networking. It is based on OpenAlI
Gym, a toolkit for RL research and ns-3 network simulator. Specifi-
cally, it allows representing an ns-3 simulation as an environment
in Gym framework and exposing state and control knobs of entities
from the simulation for the agent’s learning purposes. Our frame-
work is generic and can be used in various networking problems.
Here, we present an illustrative example from the cognitive radio
area, where a wireless node learns the channel access pattern of a
periodic interferer in order to avoid collisions with it. The toolkit
is provided to the community as open source under a GPL license.
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1 INTRODUCTION

Modern communication networks have evolved into extremely com-
plex and dynamic systems. Although a network makes use of rather
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simple to understand protocols, their composition makes network’s
behavior non-trivial with very often hidden (i.e. not directly explain-
able) dependencies between components’ parameters and network
performance metrics. For this reason, traditional approaches for
the design of new solutions or the optimization of existing ones
provide only limited gains as they are based on (over-)simplified
models created according to people’s understanding. Moreover, the
approaches are mostly focused on a single component (e.g. protocol
layer) neglecting the end-to-end network’s nature.

Furthermore, today’s networks generate a large amount of mon-
itoring data, that can help to improve the design and management
of them. This, however, requires the processing of the raw data in
order to find hidden dependencies. All this together makes machine
learning (ML) techniques the perfect fit for modern networking [25].
ML can provide estimated models with tunable accuracy, that will
help researchers to tackle intractable old problems, as well as en-
courage new applications in the networking domain potentially
leading to breakthroughs [28]. We have already seen a boom in the
usage of machine learning in general and reinforcement learning
(RL) in particular for the optimization of communication and net-
working systems ranging from scheduling [2, 6], resource manage-
ment [18], congestion control [14, 15, 29], routing [1] and adaptive
video streaming [19]. Each proposed approach shows significant
improvements compared to traditionally designed algorithms.

However, we believe that RL in networking (RLN) research is
slowed down by the following factors:

o The existence of a knowledge gap — networking researchers

lack ML related knowledge and experience while ML re-
searchers lack knowledge in networking [28].

Lack of training environments — RL requires a large num-
ber of interactions with an environment to properly train

an agent. The best way is to use a real-world environment.
However, it is time-consuming and researchers usually lack

skills and/or hardware to setup a testbed, while an explo-
ration (required in RL to learn) in real network deployments

can be unsafe for their operation.

The need for reliable benchmarking [4] — currently, researchers
build and use their environments on a case-by-case basis.
Some of them use network simulators, others real-world

hardware, i.e. testbed. This issue makes the direct compar-
ison of the performance of published algorithms difficult

while tracking the RLN progress almost impossible.

Contribution: In this paper, we propose ns3-gym — a first at-
tempt to fix all the above problems. It is a benchmarking system
for networking based on two well-known and acknowledged by
research community frameworks, namely, ns-3 and OpenAl Gym.
It combines the advantages of these two, namely, the verified and
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tested models of ns-3 and the simplicity of prototyping RL-based
algorithms in Python using numerical computation libraries (e.g.
Tensorflow! and Keras?). Specifically, ns3-gym simplifies feeding
the RL models with the data generated in the simulator.

The framework is generic and it can be easily extended and used
in a wide range of networking problems. We provide the first set
of problems along with baseline solutions that can be used by the
community to directly compare the performance of different RL-
based algorithms (i.e. agents) using the same virtual conditions of
well-defined simulation scripts (i.e. environments). We believe that
our work will help to motivate researchers from both networking
and ML areas to collaborate in order to develop and share innovative
algorithms and challenging environments, and hence speed up
research and development in RLN area.

2 BACKGROUND

In this section, we provide an overview of reinforcement learning
technique together with tools that simplify the development and
training of RL models. Then, we briefly introduce the ns-3 simulator.

2.1 Reinforcement Learning

Reinforcement learning is being successfully used in robotics for
years as it allows the design of sophisticated and hard to engineer
behaviors [13]. The main advantage of RL is its ability to learn
to interact with the surrounding environment based on its own
experience. An RL agent interacts with an environment in the
following way: i) it observes the current state of the environment,
ii) based on the observation it selects an action and executes it in
the environment, iii) which in turn returns a reward associated
with this specific action in the particular state — Fig. 1. The way
an environment transforms the agent’s action taken in the current
state into the next state and a reward is unknown. Hence, the
agent’s main goal is to approximate the environment’s function
and learn the best policy allowing it to select always the best action
and maximize its cumulated reward.

2.2 RL Tools

OpenAl Gym [4] is a toolkit for developing and comparing rein-
forcement learning algorithms. It provides a simple API that unifies
interactions between an RL-based agent and an environment. Specif-
ically, any environment can be integrated into the Gym as long as
all the observations, actions, and rewards can be represented as
numerical values. Note, that Gym makes no assumptions about the
structure of an agent (just provides input data and action knobs)
and it is compatible with any numerical computation library. Based
on the unified interface Gym provides access to a collection of
standardized environments. The framework was already integrated
with the variety of environments in areas ranging from video games
(e.g. Ping-Pong) to robotics [4, 23, 24].

As mentioned in the previous section (§2.1), an RL agent at-
tempts to approximate the environment’s function. Usually, such
functions are very complex and cannot be represented in closed-
form. Fortunately, neural networks cope well in such cases. They
use coefficients to approximate the function transforming inputs
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to outputs and during the learning process, they try to find the
coefficients’ values yielding the best approximation. The learning
is an iterative process during which a solver follows gradients that
lead to smaller errors. In recent years, the task of developing and
solving the neural networks was simplified by the emergence of
numerical computation libraries. For instance, Keras provides a
high-level API allowing to create and optimize even a very complex
neural network in just a few lines of code. Keras runs on top of
TensorFlow that allows representing numerical computation as
a data flow graph, i.e. nodes represent mathematical operations,
while edges represent the multidimensional data arrays that flow
between them. Finally, with only minor changes, TensorFlow al-
lows performing the computations on a single CPU and GPU as
well as distributed clusters of them using the same code.

The replication of the published RL algorithms is a challenging
task, especially for people entering the field of machine learning, as
usually they are very complex and even a small difference (e.g. bug)
in the implementation may affect their performance. Releasing a
code repository along with the published paper is a good practice,
however, still not the case for most of the publications. Fortunately,
recently the high-quality reference implementations of RL algo-
rithms become available [9, 10, 16]. Researchers can use them as a
base and apply to the problems in their respective areas.

2.3 ns-3 Network Simulator

ns-3 is a discrete-event network simulator for networking systems,
targeted primarily for research and educational use. It is an open-
source project developed in C++ using object-oriented program-
ming model [21, 22]. It became a standard in networking research
as the results obtained are accepted by the community.

ns-3 tries to reflect the reality as close as possible, therefore it
uses several core concepts and abstractions that well map to how
computers and networks are built, i.e. a Node is a fundamental en-
tity connected to the network. It is a container for Applications,
Protocols and Network Devices. An application is a user pro-
gram that generates packet flows. A protocol represents a logic of
network and transport level protocols, e.g. TCP, OSRL routing. A
Network Device is an entity connected to a Channel that is the
basic communication sub-network abstraction. As in real-world,
in order to build a network system, one has to perform set of task
including installing network devices in nodes and connecting them
to channels, allocating proper MAC addresses, configuring the pro-
tocol stacks of all nodes, etc. ns-3 provides a set of helpers that
simplifies the tedious work behind easy to use APL

The introduced abstractions came with the unified interfaces
between entities, what allowed the research community to work
in parallel on different parts of the protocol stack without any
problems during integration, e.g. any application can send packets
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over Ethernet or WiFi network devices. Based on the core concepts,
the ns-3 community developed a vast set of networking protocols
(e.g. IP, TCP, UDP) and communication technologies (e.g. Ethernet,
WiFi, LTE, WiMAX) with detailed modeling of physical layer oper-
ations. Furthermore, ns-3 offers a variety of statistical models for
wireless channels, mobility, and traffic generation. In addition, ns-3
can interact with external systems (e.g. real-time LTE testbed [11]),
applications (e.g. using direct code execution technique [27]) and
libraries (i.e. Click [26]).

Finally, ns-3 provides also generic tracing and attribute configu-
ration subsystems, that signal state changes in a network model and
allow monitoring the internal state and parameters of any entity
(e.g. node, protocol, device) in a simulation; and control its parame-
ters and attributes at run-time, respectively. Both subsystems serve
as a basis for the ns3-gym framework.

3 MOTIVATION

The main goal of our work is to facilitate and shorten the time
required for prototyping of novel RL-based networking solutions.
We believe that developing control algorithms and training them
with the data generated in a simulation is very often more practical
(i.e. easier, faster and safer) in comparison to running experiments
in the real world. Moreover, it gives an opportunity for everybody to
test his/her ideas, without a need to buy and set up costly testbeds.

Furthermore, thanks to transfer learning, i.e. the ability to reuse
previously acquired knowledge in a new (more complex) system or
an environment, the agent trained in a simulation can directly inter-
act or be retrained in the real world much faster than when starting
from the scratch [7]. How well the agent copes with the real-world
environment, depends on the accuracy of the simulations models
that were used during training. Since ns-3 community strives to
make its models reflect reality as close as possible, we believe the
knowledge acquired in a simulation should remain reasonable also
for the real world.

Finally, note that our framework is not constrained only to RL as
one can use it to obtain observations from the simulation in order
to generate data-sets and use them for the offline learning using a
variety of ML algorithms (e.g. supervised learning).

4 SYSTEM ARCHITECTURE

The architecture of ns3-gym as depicted in Fig. 2 consists of the
following major components, namely: ns-3 network simulator and
OpenAl Gym framework. The former one is used to implement
environments, while the latter one unifies their interface. The main
contribution of this work is the design and implementation of a
generic interface between OpenAlI Gym and ns-3 that allows for
seamless integration of those two frameworks. In the following, we
describe our ns3-gym framework in detail.

4.1 Network Simulator

ns-3 is a core part of our framework since it is used to implement a
simulation scenario serving as an environment for an RL agent. A
simulation scenario contains a network model together with sched-
uled changes in simulation conditions. One can create even very
complex network models and study them under various traffic and
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Figure 2: Architecture of ns3-gym framework.

mobility patterns by assembling the detailed models of communica-
tion components and channels provided in ns-3. An experimenter
triggers changes in some conditions during the course of a simula-
tion by scheduling proper events, e.g. start/stop traffic sources.

The state of the entire network model is a composition of states
of its elements. The state representation of each entity depends on
its implementation. For example, the state of a packet queue is a
numerical value indicating the number of enqueued packets, while
most of the protocols (e.g. TCP) are implemented as finite-state
machines (FSM) jumping between predefined states. Note that in
the latter case the state can be also encoded into numerical values.
ns-3 provides proper interfaces allowing reading the internal state
of each entity.

It is up to the designer to decide which part of the simulation
state is going to be shared with the agent for the learning purpose.
In most cases, it will be sub-set of the network model state together
with some statistics collected during the last step execution (e.g.
number of TX/RX packets in a network device and mean inter-
packet arrival interval). Usually, the observed state will be limited
to a state of a single instance of the protocol that the RL-based
agent is going to control. The rest entities of the network model
implement and evolve the complex state of the environment the
agent is going to interact with. Similarly, the possible actions are
limited to changes of parameters of the observed entity. In other
words, the agent is able to only partially observe the network model
by interacting with it though taken actions and experiencing its
response in changes of the local observations.

4.2 OpenAl Gym

The main purpose of the Gym framework is to provide a standard-
ized interface allowing to access the state and execute actions in an
environment. Note that the environment is defined entirely inside
the simulation scenario making the Python code environment-
independent, which allows to easily to exchange the agents’ imple-
mentation while keeping the reproducibility of the environment’s
conditions.



MSWiM 19, Nov 25-29, 2019, Miami Beach, USA

4.3 ns3-gym Middleware

ns3-gym middleware interconnects ns-3 network simulator and
OpenAlI Gym framework. Specifically, it takes care of transferring
state (i.e. observations) and control (i.e. actions) between the Gym
agent and the simulation environment.

The middleware consists of two parts, namely Environment
Gateway and Environment Proxy. The gateway resides inside the
simulator and is responsible for gathering environment state into
structured numerical data and translating the received actions,
again encoded as numerical values, into corresponding function
calls with proper arguments. The proxy receives environment state
and expose it towards an agent through the pythonic Gym APL
Note, that ns3-gym middleware transfers the state and actions
as numerical values and it is up to the researcher to define their
semantics.

5 IMPLEMENTATION

ns3-gym is a toolkit that consists of two software components (i.e.
Environment Gateway written in C++ and the Environment Proxy
in Python) being add-ons to the existing ns-3 and OpenAl Gym
frameworks. The toolkit simplifies the tasks of development of the
networking environments and training RL-based agents by tak-
ing care of the common tasks and hiding them behind easy to use
APL Specifically, ns3-gym provides a way for the collection and ex-
change of information between frameworks (including connection
initialization and data (de)serialization), takes care of the manage-
ment of ns-3 simulation process life-cycle as well as freezing the
execution of simulation during the interaction with an agent. The
communication between components is realized with ZMQ? sock-
ets using the Protocol Buffers* library for serialization of messages.

The software package together with clarifying examples is pro-
vided to the community as open source under a GPL in our on-
line repository: https://github.com/tkn-tub/ns3-gym.Itis also
available as a so-called ns-3 App, that can be integrated with any
version of the simulator: https://apps.nsnam.org/app/ns3-gym

In the following subsections, we describe the ns3-gym compo-
nents in details and explain how to use them with code examples.

5.1 Environment Gateway

In order to turn a ns-3 simulation scenario into a Gym environment,
one need to i) instantiate OpenGymGateway and ii) implement its
callbacks functions listed in Listing 1. Note, that the functions have
to be registered in gateway object.

Ptr<OpenGymSpace> GetObservationSpace();

»| Ptr<OpenGymSpace> GetActionSpace();

3| Ptr<OpenGymDataContainer> GetObservation();

1| float GetReward();

5| bool GetGameOver();

6| std::string GetExtraInfo();

7| bool ExecuteActions(Ptr<OpenGymDataContainer> action);

Listing 1: ns3-gym C++ interface

The functions GetObservationSpace and GetActionSpace are
used to define observation and action spaces (i.e. data structures
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storing observations and actions encoded as numerical values), re-
spectively. Both spaces descriptions are created during the initializa-
tion of the environment and send to the environment proxy object
in the initialization message — Fig.3, where they are used to cre-
ate corresponding spaces in Python domain. The following spaces
defined in the OpenAI Gym framework are supported, namely:

(1) Discrete — a discrete number between 0 and N.

(2) Box — a vector or matrix of numbers of single type with
values bounded between low and high limits.

(3) Tuple — a tuple of simpler spaces.

(4) Dict — a dictionary of simpler spaces.

Listing 2 shows an example definition of the observation space

as C++ function. The space is going to be used to observe queue
lengths of all the nodes available in the network. The maximal
queue size was set to 100 packets, hence the values are integers and
bounded between 0 and 100.

3

Listing 2: An

Ptr<OpenGymSpace> GetObservationSpace() {
uint32_t nodeNum = NodelList::GetNNodes ();
float low = 0.0;
float high = 100.0;
std::vector<uint32_t> shape = {nodeNum,};
std::string type = TypeNameGet<uint32_t> ();
Ptr<OpenGymBoxSpace> space =
<—CreateObject<OpenGymBoxSpace>(low, high, shape, type);
return space;}

example definition of the

GetObservationSpace function

The step in ns3-gym framework can be executed synchronously,

i.e. scheduled in predefined time-intervals (time-based step), e.g.
every 100 ms, or asynchronously, i.e. fired by an occurrence of spe-
cific event (event-based step), e.g. packet loss. In both cases, one
has to define a proper callback that triggers the Notify function of
the OpenGymGateway object.

After being notified about the end of a step — Fig.4 - the gateway

collects the current state of the environment by calling the following
callback functions:

(1) GetObservation - collect values of observed variables and/or
parameters in simulation;

(2) GetReward - get the reward achieved during last step;

(3) GetGameOver - check a predefined gameover condition;

(4) GetExtraInfo - (optional) get an extra information associ-
ated with current environment state.

The listing 3 shows example implementation of the GetObservation

observation function. First, the box data container is created ac-
cording to the observation space definition. Then the box is filled
with the current size of the queue of WiFi interface of each node.

1

)

4

13

Ptr<OpenGymDataContainer> GetObservation() {
uint32_t nodeNum = NodelList::GetNNodes ();
std: :vector<uint32_t> shape = {nodeNum,};
Ptr<OpenGymBoxContainer<uint32_t>> box =
<—CreateObject<OpenGymBoxContainer<uint32_t>>(shape);

uint32_t nodeNum = NodelList::GetNNodes ();

for (uint32_t i=@; i<nodeNum; i++) {
Ptr<Node> node = NodelList::GetNode (i);
Ptr<wWifiMacQueue> queue = GetQueue (node);
uint32_t value = queue->GetNPackets();
box->AddValue(value);

}

return box; }

Listing 3: An example definition of the GetObservation
function
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The ns3-gym middleware delivers the collected environment’s
state to an agent that in return sends the action to be executed. Note,
that the execution of a simulation is stopped during this interaction.
Similarly to the observation, the action is also encoded as numer-
ical values in a container. The user is responsible to implement
the ExecuteActions callback, that maps the numerical values to
proper actions, e.g. setting minimum MAC contention window size
for the 802.11 WiFi interface of each node — Listing 4.

bool ExecuteActions(Ptr<OpenGymDataContainer> action) {
Ptr<OpenGymBoxContainer<uint32_t> > box =
<—DynamicCast<OpenGymBoxContainer<uint32_t> >(action);
std::vector<uint32_t> actionVector = box->GetData();

5 uint32_t nodeNum = NodelList::GetNNodes ();
6 for (uint32_t i=0; i<nodeNum; i++) {

7 Ptr<Node> node = NodelList::GetNode(i);

8 uint32_t cwSize = actionVector.at(i);

9 SetCwMin(node, cwSize);

ol 3

11 return true;}

Listing 4: An example definition of the ExecuteActions
function

5.2 Environment Proxy

The environment proxy is the northbound part of the middleware.
It is wrapped by the Ns3GymEnv class that inherits from the generic
Gym environment, which makes it accessible through OpenAl Gym
APL Specifically, the proxy translates the Gym function calls into
messages and sends them towards an environment gateway over
ZMQ socket.

In the code listing 5, we present example Python script show-
ing the usage of ns3-gym framework. First, the ns-3 environment
and agent are initialized — lines 5-7. Note, that the creation of
ns3-v@ environment is achieved using the standard Gym API. Be-
hind the scene, the ns3-gym engine starts a ns-3 simulation script
located in the current working directory, establishes a ZMQ con-
nection and waits for the environment initialization message —
Fig.3. Optionally, the ns-3 environment can be adjusted by passing
command line arguments during the start of the script (e.g. seed,
simulation time, number of nodes, etc.). This, however, requires to
use Ns3Env(args={arg=value, .. .}) constructor instead of stan-
dard Gym: :make(’ns3-v@’).

1| import gym
2| import ns3gym
3| import MyAgent

env = gym.make('ns3-v@')
6| obs = env.reset()
agent = MyAgent.Agent()

9| while True:

10 action = agent.get_action(obs)

1 obs, reward, done, info = env.step(action)
12

13 if done:
14 break

Listing 5: Example Python script showing interaction
between an Agent and ns-3 environment

At each step, the agent takes the observation and returns, based
on the implemented logic, the next action to be executed in the
environment — lines 9-11. Note, that agent class is not provided in
the framework and the developers are free to define them as they
want. For example, the simplest agent performs random actions.
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The execution of the episode terminates (lines 13-14) when the
environment returns done=true, that can be caused by the end of
the simulation or meeting the predefined game-over condition.

In addition, a Gym environment exposes also a Gym: :reset()
function, that allows reverting the environment into the initial state.
The ns3-gym implements the reset function by simply terminating
the simulation process and starting a new one reusing mechanisms
of the make function. Note, that the mapping of all the described
functions between corresponding C++ and Python functions is
done by the ns3-gym framework automatically hiding the entire
complexity behind easy to use APIL

5.3 Discussion

Although the ns-3 project supports Python bindings that would al-
low us to integrate it with OpenAl Gym directly in a single Python
process, we have not taken this approach and decided to split ns3-
gym into two communicating processes, ie. ns-3 (C++) and OpenAl
Gym (Python). We believe that the split is essential due to the
following reasons. First, during the learning process, an OpenAl
Gym agent has to keep its state (i.e. gained knowledge) across
multiple episodes (i.e. simulation runs). Having two separate pro-
cesses makes this requirement easier to fulfill. Moreover, it allows
running multiple ns-3 instances in parallel even in a distributed
environment. Hence, the agent learning process can be executed on
powerful machines with the support of GPUs, while ns-3 instances
on ones equipped only with decent CPUs. This feature is espe-
cially important for techniques like A3C [20], that uses multiple
agents interacting with their own copies of the environment for
more efficient learning. Then, the independent, hence more diverse,
experience of all agents is periodically fused to the global learn-
ing network. Second, the ns-3 project is developed in C++, while
Python bindings are generated automatically as an add-on that al-
lows only writing simulations scripts. Apparently, the development
of scripts in C++ is easier for newcomers as there are much more
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code examples (while only a few in Python) and documentation as
well as more support from the community. Finally, having the C++
implementation allows updating existing C++ simulation scripts
and examples to be used as OpenAl Gym environment.

6 ENVIRONMENTS

In the following subsections, we present a typical workflow when
using the ns3-gym framework. Then, we briefly describe the envi-
ronments provided as examples. Finally, we discuss the feasibility
of implementation of multi-agent environments and the direct us-
age of agents trained in a simulated environment in a real-world
experiment using emulation technique.

6.1 Typical Workflow

A typical workflow of developing and training an RL-based agent
is shown as numbers in Fig. 2: (1) Create a model of the network
and configure scenario conditions (i.e. traffic, mobility, etc.) us-
ing standard functions of ns-3; (2) Instantiate ns3-gym environ-
ment gateway in the simulation, i.e. create OpenGymGateway ob-
ject and implement callbacks functions that collect a state of the
environment to be shared with the agent and execute actions re-
ceived from it; (3) Create the ns3-gym environment proxy, i.e. create
ns3-gym using the standard Gym: : make (’ns3-gym’) function; (4)
Develop an RL-based agent using available numerical Python li-
braries, that interacts with the environment using the standard
Gym: :step(action) function; (5*) Train the agent.

6.2 Example Environments

In addition to the generic ns3-gym interface when one can observe
any variable in a simulation, we provide also custom environments
for specific use-cases, e.g. in TcpNs3Env where for the problem
of flow & congestion control (TCP) the observation state, action
and reward function are predefined using the RL mapping pro-
posed by [15]. This simplifies dramatically the development of
own RL-based TCP solutions and can be further used as a bench-
marking suite allowing to compare the performance of different RL
approaches in the context of TCP.

DashNs3Env is another predefined environment for testing adap-
tive video streaming solutions using our framework. Again the RL
mapping for observation state, action and reward is predefined, i.e.
as proposed by [19].

6.3 Multi-Agent Environments

In multi-agent environments, a number of agents must collaborate
or compete to achieve a predefined goal, e.g. maximize utilization
of wireless resources. They belong to the most complex branch
of RL research, as traditional RL approaches fail to learn in such
environments, i.e. directly applying single-agent RL algorithms and
treating other agents as part of the environment is problematic as
the environment is non-stationary from the view of any agent, what
eventually violates Markov assumptions required for convergence
and prevents learning [17].

As a communication network by nature is a multi-agent en-
vironment (e.g. wireless network), we believe that our ns3-gym
framework may be a useful tool helping to advance research and
knowledge in the multi-agent RLN area. Note, that implementation
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of multi-agent environment can be achieved using multiple (i.e. one
for each agent) or a single instance of the OpenGymGateway in ns-3
simulation script. In the former case, the gateways communicate
with corresponding agents in separate Python processes, while in
the latter case all agents are being trained in a single Python pro-
cess. This, however, requires to implement a switching mechanism
steering observations and actions to the proper agents (e.g. based
on node ID added to the observation vector).

6.4 Emulation

Since the ns-3 allows for usage of real Linux protocol stacks inside
simulation [27] as well as can be run in the emulation mode for eval-
uating network protocols in real testbeds [5] (possibly interacting
with real-world implementations), it can act as a bridge between an
agent implemented in Gym and a real-world environment. Those
capabilities give the researchers the possibility to train their RL
agents in a simulated network (possibly very fast using parallel en-
vironments) and test them afterward in real testbed without having
to change any single line of code. We believe that this intermediate
step is of the great importance for the developing of ML-based
network control algorithms reducing the possible discontinuities
when moving from simulation to real-world.

7 CASE-STUDY EXAMPLES

In this section, we present two examples of a Cognitive Radio (CR)
transmitter, that learns the pattern of a periodic interferer in order
to avoid collisions with it. In the first example, the transmitter is
able to sense the entire bandwidth (i.e. M = 4 wireless channels)
whereas in the second example it can only monitor its own channel.

Specifically, we consider the problem of radio channel selection
in a wireless multi-channel environment, e.g. 802.11 networks with
external interference. The objective of the agent is to select for
the next time slot a channel free of interference. We consider a
simple illustrative example where the external interference, e.g. a
microwave oven, follows a periodic pattern, i.e. sweeping over all
four channels in the same order as shown in Fig. 5.

Channels

Time Step

Figure 5: Channel access pattern of periodic interferer.

We created a simple simulation scenario using existing function-
ality from ns-3, i.e. interference created using WaveformGenerator
class and sensing performed using SpectrumAnalyzer class. Our
proposed RL mapping is:

e observation — occupation on each channel in the last time
slot, i.e. a vector indicating whether a received signal power
on each channel is below (-1) or above (+1) a predefined
threshold, e.g. -82 dBm; in addition, we can combine obser-
vations from last N time-steps;

e action — set the channel to be used for the next time slot,

e reward — +1 if no collision with interferer; otherwise -1,
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e gameover — if more than three collisions happened during
the last ten time-slots

Our simple RL-based agent is based on deep Q-learning tech-
nique. It uses a small neural network with two fully connected
layers, i.e. input and output. The M - N neurons in input layer use
ReLU activation function, while the output layer uses softmax ac-
tivation whose output p € (0, 1)M is a probability vector over the
four possible channels. We use Adam solver [12] during training to
tune the neural network parameters.

The source code of both examples (§7.1 and §7.2) is available in
the online ns3-gym repository.

7.1 CR - Wideband Sensing

Fig. 6 shows the learning performance. We see that after around
30 episodes, using only its local (but wideband) observations, the
agent has perfectly learned the behavior of the periodic interferer
and was able to properly select the channel for the next time-slot
avoiding any collision. Although it is not shown here, we observed
that combining observations of last N time-steps before passing
them to the agent, speeds up the learning process, i.e. with longer
observation, the agent can learn more dependencies in a single
step. In Fig. 6 we show the case when the agent was feed with the
data containing the observations from the last four time-steps (i.e.
history size N = 4).
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Figure 6: Learning performance of RL-based Cognitive Ra-
dio transmitter in case of wideband sensing.

7.2 CR - Narrowband Sensing

In contrast to the previous example, the CR transmitter has to learn
to adapt to the interferer by performing narrowband sensing. Hence
at a given point in time, the agent can only monitor the state of
the channel it is operating on. The narrow-band observations of
the CR transmitter are illustrated in Fig. 7. Note that in a single
time-slot the TX can determine only whether the currently used
channel is occupied by interfered (red, +1) or is free (blue, -1) and
has no information about the other channels (white, 0). As shown
in Fig. 8, we can observe that even narrowband sensing is sufficient
to learn the behavior of the periodic interferer and to select an
interference-free channel for the following time-slot. However, it
requires a longer training process (i.e. around 100 episodes) compar-
ing to the wideband sensing. Similar as in case of wideband sensing,
we observe that longer observation history shortens the learning
process. Again in Fig. 8 we show the agent’s learning performance
with the observation history size of N = 4.

8 RELATED WORK

Related work falls into three categories:
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Figure 7: Narrow-band observations of cognitive radio trans-
mitter: collision with interferer (red), no collision (blue), no
information (white).
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Figure 8: Learning performance of RL-based Cognitive Ra-
dio transmitter in case of narrowband sensing.

RL for networking applications: In the literature, a variety of
works can be found proposing to use RL to solve networking related
problems. We present two of those in more detail with emphasis
on the proposed RL mapping.

Li et al. [15] proposed RL-based Transmission Control Protocol
(TCP) where the objective is to learn to adjust the TCP’s congestion
window (CWND) to increase an utility function, which is computed
based on the measurement of flow throughput and latency. The
identified state space consists of EWMA of the ACK inter-arrival,
EWMA of packet inter-sending time, RTT ratio, slow start thresh-
old and current CWND is available in the provided environment.
Moreover, the action space consists of increasing and decreasing
the CWND respectively. Finally, the reward is specified by the value
of a utility function, reflecting the desirability of the action picked.

Mao et al. proposed an RL-based adaptive video streaming [19]
called Pensieve which learns the Adaptive Bitrate (ABR) algorithm
automatically through experience. The observation state consists
among other things of past chunk throughput, download time and
current buffer size. The action space consists of the different bitrates
which can be selected for the next video chunk. Finally, the reward
signal is derived directly from the QoE metric, which considers the
three QoE factors: bitrate, rebuffering, smoothness.

Extension of OpenAl Gym: Zamora et al. [30] provided an ex-
tension of the OpenAI Gym for robotics using the Robot Operating
System (ROS) and the Gazebo simulator with a focus on creating
a benchmarking system for robotics allowing direct comparison
of different techniques and algorithms using the same virtual con-
ditions. Our work aims similar goals but targets the networking
community. Chinchali et al. [6] build a custom network simulator
for IoT using OpenAI’s Gym environment in order to study the
scheduling of cellular network traffic. With ns3-gym, it would be
easier to perform such an analysis as the ns-3 contains lots of MAC
schedulers which can serve as the baseline for comparison.

Custom RL solutions for networkings: Winstein et al. [29] im-
plemented a RL-based TCP congestion control algorithm on the
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basis of the outdated ns-2 network simulator. Newer work on Q-
learning for TCP can be found in [19]. In contrast to our work both
proposed approaches are not generic as only an API meant for
reading and controlling TCP parameters was presented. Moreover,
custom RL libraries were used. Komondor[3] is a low-complexity
wireless network simulator for the next-generation high-density
WLANSs including support for novel WLAN mechanisms like dy-
namic channel bonding (DCB) or spatial reuse. In addition, Komon-
dor permits including intelligent ML-based agents in the wireless
nodes to optimize their operation based on an implemented learning
algorithm. In contrast to ns-3, Komondor is focused only on simulat-
ing WLAN operation and does not provide detailed models of other
layers of the protocol stack nor different wireless technologies. This
limits the potential of ML for cross-layer control/optimization or
cross-technology cooperation.

9 CONCLUSIONS

In this paper, we presented the ns3-gym toolkit that simplifies the
usage of reinforcement learning for solving problems in the area of
networking. This is achieved by connecting the OpenAI Gym with
the ns-3 simulator. As the framework is generic, it can be used by
the community in a variety of networking problems.

For the future, we plan to extend the set of available environ-
ments, which can be used to benchmark different RL techniques.
Moreover, we are going to provide examples showing how it can
be used with more advanced RL techniques, e.g. A3C [20]. We be-
lieve that ns3-gym will foster machine learning research in the
networking area and research community will grow around it. Fi-
nally, we plan to set up a website — so-called leaderboard - allowing
researchers to share their results and compare the performance of
algorithms for various environments using the same virtual condi-
tions.
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